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Abstract 
 
In underwater explosions, the interaction of a shock wave with submarine structure often leads to strong tension in the liquid 
that can induce cloud cavitation. As a canonical example, we numerically study the dynamics of cloud cavitation that arises in 
one-dimensional, shock-structure interaction problems; an underwater shock is replicated using Cole’s empirical formula and 
its interaction with a movable rigid plate (i.e., Taylor’s free plate) is considered. The flow is modeled using homogeneous 
bubbly flow conservation equations in which interaction between bubbles and the averaged flow is incorporated through the 
mixture-averaged pressure field. To capture unsteadiness associated with bubble dynamics, the averaged equations are closed 
with a Rayleigh-Plesset-type equation. The resulting cloud cavitation is assumed to result from heterogeneous cavitation 
inception with single-sized, gas bubble nuclei. In solving the equations, a finite volume method with shock capturing is used 
and a time-step splitting technique is adopted to resolve stiffness owing to bubble-dynamic sources. One-dimensional cloud 
cavitation induced by the shock-structure interaction is simulated to clarify the fundamental mechanisms of the inception and 
the subsequent collapse of the cloud cavitation. 
 
 

Introduction 
 
Cavitation reloading on submerged structures is of great 
interest in underwater explosion (UNDEX) research 
(Rajendran, 2008). Fluid-structure interaction (FSI) often 
causes cloud cavitation near the target surface; the 
subsequent collapse of the cloud of cavitation bubbles can 
reload the target. In the pioneering study of Taylor (1941), 
the interaction of a plane shock with an infinite flat plate 
was considered and the linearized solutions that indicate the 
occurrence of negative pressure in (non-cavitating) liquids 
were obtained. Subsequently, the pressure cutoff model that 
assumes uniform pressure within cavitating regions was 
proposed to extend Taylor’s classical theory (Kennard, 
1950; Temperley, 1950). Bleich & Sandler (1970) assumed 
bilinear fluids and computed cavitation in Taylor’s problem. 
More recently, Xie et al.  (2007, 2009) employed a baro- 
tropic relation to describe the state of cavitation clouds, and 
simulated cavitation reloading on deformable structures. 
Although these cavitation models may replicate quasistatic 
trends in bubbly cavitating flows, it is not possible to 
properly capture unsteadiness and wave dispersion that arise 
from bubble dynamics (Brennen, 1995, 2005). 

UNDEX/FSI experiments have been conducted by 
structural engineers (Nurick & Martin, 1989; Mair, 1999; 
Rajendran & Narasimhan, 2006a); one of the classical 
experimental configurations is a flat plate with shock 
loading due to detonation of high explosives. The photo- 
graphs of Eldridge et al. (1950) illustrate a cloud of 
cavitation bubbles near a shock-loaded plate. Rajendran & 
Satyanarayana (1997) and Rajendran & Narasimhan 
(2006b) observed cavitation reloading from pressure and 
strain evolution on a deformed plate surface. Brett et al. 
(2000) and Brett & Yiannakopolous (2008) also confirmed 
the collapse of cavitation clouds adjacent to a submerged 
cylinder loaded from a nearby explosion. 

Here, the dynamics of cloud cavitation that arises in 
one-dimensional UNDEX/FSI problems are numerically 
studied to clarify the fundamental physics of its inception 
and the subsequent collapse. In what follows, we review the 
classical UNDEX/FSI theories of Cole (1948) and Taylor 
(1941) and perform the modeling and simulation of a 
homogeneous bubbly flow in order to investigate averaged 
dynamics of bubbly cavitating mixtures. 
 
Nomenclature 
 
Roman letters 
B Tensile strength of a liquid (Pa) 
C Sonic speed of a liquid at a bubble wall (m s-1) 
c Sonic speed (m s-1) 
H Enthalpy of a liquid at a bubble wall (m2 s-2) 
m Mass per unit area (kg m-2) 
n Bubble number density (m-3) 
p Pressure (Pa) 
R Bubble radius (m) 
u Velocity (m s-1) 
  
Greek letters 
α Void fraction (−) 
γ Liquid stiffness (−) 
ρ Density (kg m-3) 
τ Time constant (s) 
ψ Taylor’s FSI parameter (−) 
  
Subscripts 
0 Equilibrium values 
b Bubble quantities 
l Liquid quantities 
p Quantities of Taylor’s plate 
w Quantities at bubble/plate walls 
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Problem Description 
 
Consider the one-dimensional FSI problem of Taylor (1941) 
in which an UNDEX plane shock interacts with a movable 
rigid plate as depicted in Fig. 1. The shock pressure is 
assumed to show exponential decay with time constant τ 
(Cole, 1948). The plate is assumed to be “free” and “air- 
backed,” meaning that the plate dynamics depend only on 
the pressure force from the water side. 

 
Figure 1: Schematic of the FSI model of Taylor (1941). 

Let pi and pr be the pressures of the incident and 
reflected waves, respectively, at the plate wall (x = 0). 
Newton’s second law requires 

mp

dup
dt

= pi + pr ,               (1) 

where mp is the mass of the plate per unit area and up is the 
plate velocity. Suppose that the acoustic relation holds (in 
case the water withstands tension without cavitation): 

pr = pi − ρlclup ,                (2) 

where ρl is the water density and cl is the speed of sound in 
the water. It follows from Eqs. (1) and (2) with pi = ps 
exp(−t/τ), where ps is the pressure at the shock front, that the 
evolution of the plate displacement is described by 

xp (t) =
2psτ

2

mp (1−ψ)
1
ψ
1− exp −

ψt
τ

"

#
$

%

&
'

(
)
*

+*

,
-
*

.*
− 1− exp −

t
τ

"

#
$

%

&
'

(
)
*

+*

,
-
*

.*

/

0
1
1

2

3
4
4

, (3) 

where the dimensionless FSI parameter, ψ, is defined as ψ = 
ρlclτ/mp. The final displacement is thus xp(∞) = 2psτ/(ρlcl). 
The temporal evolution of the pressure on the plate wall is 
written as 
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where pl0 denotes the ambient (equilibrium) pressure. 
To interpret FSI effects on the pressure at the plate 

wall, its temporal evolution with varying the value of ψ in 
Eq. (4) is plotted in Fig. 2. It is confirmed that the wall 
pressure shows an instantaneous increase of the double 
incident shock strength at the collision time. Unlike the 
stationary wall case with its infinite inertia (ψ = 0), the plate 
motion yields tension (with negative pressures) in (non- 
cavitating) water; this tension has potential for inducing 
cavitation near the plate. Because the plate with smaller 

inertia more promptly responds to the shock loading, the 
time to achieve the minimum pressure decreases as the plate 
mass decreases. However, the duration of the tension part 
increases with increasing the plate mass. This suggests that 
the choice of Taylor’s FSI parameter can control cavitation 
inception dynamics that depend strongly on the rate of 
change in liquid pressure to negative values. 

What follows is to model mixture-averaged 
dynamics of bubbly cavitating flows in order to examine 
heterogeneous cavitation inception occurring in Taylor’s 
FSI problem and the subsequent collapse of the cavitation 
cloud near the plate. 
 
Physical Model 
 
To study the averaged dynamics of cloud cavitation, we 
solve the ensemble-averaged conservation equations for 
homogeneous bubbly flows (for details of the model 
assumptions see Zhang & Prosperetti, 1994) 

∂ρ
∂t
+
∂(ρu)
∂x

= 0 ,              (5) 

∂(ρu)
∂t

+
∂
∂x

ρu2 + pl − p( ) = 0 ,        (6) 

∂α
∂t

+
∂(αu)
∂x

= 3α R2 .            (7) 

Here, ρ is the mixture density (≈ (1−α) ρl), u is the mixture 
velocity, pl is the averaged liquid pressure, p  represents 
pressure fluctuations due to the phase interaction (Ando et 
al., 2011), α is the void fraction, and R  is the bubble wall 
velocity (the dot denotes the substantial time derivative). 
The liquid pressure is described by the Tait equation of state 
(Thompson, 1972) 
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where ρl0 is the reference liquid density at pl0, and γ and B 
denote stiffness and tensile strength of the liquid, 
respectively. The mixture is assumed monodisperse so that 
the void fraction is calculated as 

α =
4π
3
nR3 ,                (9) 

where R is the bubble radius and n is the bubble number 
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Figure 2: Evolution of the liquid pressure at Taylor’s 
plate wall. 
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density that is assumed spatially uniform at all times (i.e., no 
slip between bubbles and the host liquid). Note that for 
simulating cloud cavitation that originates from hetero- 
geneous cavitation inception with air bubble nuclei, the 
initial void fraction of the cavitation nuclei is set to small 
values (say, α0 = 10-5, representative value for tap water; 
Kedrinskii, 2005). 

The homogeneous bubbly flow equations (5) to (7) 
are coupled to the equation of Gilmore (1952) that accounts 
for the effect of liquid compressibility on individual bubble 
dynamics: 
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where H and C are the enthalpy and the sonic speed of the 
liquid, respectively, at the bubble wall. The liquid pressure 
in Eq. (6) is now interpreted as the far-field pressure for the 
Gilmore equation (10); the flow is two-way-coupled. The 
two-way coupling assumption may be valid for dilute 
mixtures (α << 1) in which direct interactions between the 
neighboring bubbles are negligible (van Wijngaarden, 1972). 
To efficiently evaluate effects of heat and mass transfer on 
bubble dynamics, the reduced-order model of Preston et al. 
(2007) is used to determine internal bubble pressure. Further 
details of the bubble-dynamic equations can be found in 
Ando et al. (2011). 

For stable shock computations (LeVeque, 2002), the 
Gilmore equation (10) is put into conservation form: 

∂(nR)
∂t

+
∂(nRu)
∂x

= n R .           (11) 

In this form, the bubble radius is viewed as an Eulerian 
variable; the bubbles are considered to be distributed con- 
tinuously in space. 
 
Numerical Method 
 
A finite-volume, fifth-order accurate, weighted essentially 
non-oscillatory (WENO) scheme (Liu et al., 1994; Balsara 
& Shu, 2000), which has proven to work for accurate shock 
calculations in various examples (Shu, 1997), is used to 
reconstruct the conserved variables at cell edges from the 
cell-averaged quantities. The WENO reconstruction is 
performed in the characteristic space for shock calculations 
to be more robust (Qiu & Shu, 2002). The resulting local 
Riemann problem at each cell edge is solved using the 
HLLC Riemann solver (Toro et al., 1994; Toro, 2009) so as 
to determine the numerical flux. 

Since the system of the equations becomes very stiff 
in particular for the case of violently collapsing cavitation 
bubbles, a time-step splitting technique is adopted; the 
averaged fluid dynamics and the bubble dynamics are 
integrated separately in time in to tackle such stiffness. Here, 
the second-order accurate splitting scheme of Strang (1968) 
is used together with a third-order TVD Runge-Kutta (RK) 
scheme (Shu & Osher, 1988) and an adaptive RK scheme 
with time-step control (Press et al., 1994), respectively, for 
the fluid-dynamic and bubble-dynamic parts. 

FSI effects are incorporated into the model equations 
as reflecting boundary conditions. If the displacement of 
Taylor’s plate is sufficiently small, the plate motion (Eq. 
(1)) can be incorporated at the fixed point (x = 0) in Eulerian 

frame (LeVeque, 2002; Toro, 2009). Specifically, the small 
displacement condition is satisfied provided the final 
displacement xp(∞) for non-cavitating liquids is far smaller 
than the relaxation length, clτ, of Cole’s UNDEX shock 
wave. To maintain the formal order of accuracy of the 
WENO reconstruction, we add extra fictitious cells away 
from the boundary (Dadone & Grossman, 1994). 

The computational grid is uniform with cell width 
(Δx = R0) and set to be large enough to prevent solutions of 
our concern near the plate wall from being contaminated 
with spurious waves reflected from the other boundary. The 
time step for the averaged fluid dynamics is set to be 
sufficiently small (CFL = 0.1) for splitting errors to be 
negligible. 

 
Results and Discussion 
 
As a model example, we simulate the experiment of 
Rajendran & Satyanarayana (1997) in which a steel plate 
(mp = 31.4 kg m-2) whose one side is covered with an 
air-filled tube was loaded by an underwater shock (ps = 4.98 
MPa, τ = 15.2 µs) at the depth of 2 m from the free surface 
of water (20°C) with air bubble nuclei (α0 = 10-5, R0 = 50 
µm); the induced fluid velocity corresponding to the shock 
pressure is according to the (linear) acoustic relation. 
Assuming that the tube attached to the plate is massless, the 
corresponding FSI parameter is computed as ψ = 0.72. For 
comparative purposes, the smaller value (ψ = 0.1), which 
may account for the effect of additional mass from the 
attached tube, is also considered. With these parameters, the 
small displacement condition is well satisfied so that the 

 
Figure 3: Spatial evolution of the averaged pressure 
(top) and the void fraction (bottom) for the UNDEX 
shock reflecting from Taylor’s plate with ψ = 0.1. The 
time is measured from the shock collision with the plate 
at x = 0. 
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reflecting boundary conditions can be implemented in 
Eulerian frame. 

In Fig. 3, we observe the evolution of the shock 
reflecting from the plate with ψ = 0.1 and the subsequent 
cloud cavitation. The air bubble nuclei are compressed by 
the reflected shock wave and show oscillations in volume 
behind the shock front. Despite the fact that the initial void 
fraction of the nuclei is as small as 10-5, the sharp shock 
front exhibits decay and oscillations (in the averaged liquid 
pressure field) due to their bubble-dynamic effects as the 
shock evolves. The following tension wave leads to the 
growth of the cavitation nuclei neighboring the plate wall. 
The case with decreasing the plate inertia (ψ = 0.72) is 
presented in Fig. 4. Now that the plate responds to the 
loading more promptly, the relaxation tail of the shock 
shortens. As a result, the cloud expansion is more violent 
and the corresponding pressure rise is augmented. 

The temporal evolution of the averaged pressure at the 
plate wall for the cases with ψ = 0.1 and 0.72 is presented in 
Fig. 5. For comparison, the non-cavitating solutions (Eq. 
(4)) are also plotted; the times at which the minimum 
pressures are encountered (denoted by tmin) are longer than 
the isothermal natural period of oscillations of the cavitation 
nuclei (0.017 ms). It is observed that the negative pressure 
(tension) duration substantially disappears due to cavitation 
caused by the structural interaction with ψ = 0.1. In this case, 
the decay time, tmin, is approximately five times as long as 
the period of bubble nuclei oscillations, so that the nuclei 
tend to respond to the ambient pressure variation in a quasi- 
static manner. In other words, the cavitation inception 
occurs immediately after the pressure falls below the vapor 
pressure. The tension wave with ψ = 0.72, on the contrary, 
leads to some negative pressure duration because of the 
inception delay. This example therefore suggests that in 
properly predicting heterogeneous cavitation inception with 
gas bubble nuclei (of representative sizes) in a liquid, there 
is a need to compare their oscillation periods with the 
duration of tension in the liquid. 

The cavitation cloud in Figs. 3 and 4 begins to collapse 
and the shock forms and propagates from the plate as 
presented in Figs. 6 and 7, respectively. Note that the cloud 
collapse in the case of ψ = 0.72 starts earlier due to the 
observation that the pressure at the plate wall with 
increasing ψ returns to the ambient pressure pl0 more 
quickly in the non-cavitating case (see Fig. 2). The resulting 
shock pressure increases approximately to the ambient 
pressure as the shock evolves. Behind the shock front, the 
cloud exhibits oscillations in void fraction (or in volume). 
The cloud dynamics thus lead to oscillatory shock structure 
in the averaged pressure field; this is observed typically in 
shock propagation through monodisperse bubbly liquids 

 
Figure 4: As Fig. 3, but with ψ = 0.72. 

 

 
Figure 5: Temporal evolution of the averaged pressures 
at the plate wall in Figs. 3 and 4, together with the 
non-cavitating solutions (Eq. (4)) that exhibit minimum 
pressures at tmin = 0.078 ms and 0.036 ms for ψ = 0.1 and 
0.72, respectively. 
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Figure 6: As Fig. 3 (ψ = 0.1), but for cloud collapse at 
later times. 
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(Ando et al., 2013). It is more obvious in the case of ψ = 0.1 
that the violent cloud collapse yields remarkable increase in 
the averaged pressure. However, the shock induced by the 
collapse is far weaker than the incident shock and cannot 
explain pronounced cavitation reloading as observed in 
Rajendran & Satyanarayana (1997). Hence, in this particular 
example, the one-dimensional cavitation cloud collapse is 
not violent enough to produce strong shocks that can 
account for the cavitation reloading. Furthermore, this 
indicates that geometric focusing effects in cavitation cloud 
collapse in two/three dimensions (Wang & Brennen, 1999; 
Wang, 1999) may be more important in the study of 
structural damage from cavitation reloading. 

 
Concluding Remarks 
 
The dynamics of one-dimensional cloud cavitation caused 
by structural interaction with an underwater shock were 
studied based on the homogeneous bubbly flow model with 
the classical theories of Cole (1948) and Taylor (1941). As a 
model problem, we simulated the experiment of Rajendran 
& Satyanarayana (1997). The heterogeneous cavitation 
inception is shown to be sensitive to the rate of change in 
liquid pressure to negative values (tension). If the duration 
of the tension state is sufficiently large compared with 
oscillation periods of gas bubble nuclei, the inception occurs 
immediately after the liquid pressure falls below the vapor 
pressure. It also transpires that the one-dimensional cloud 
collapse leads to oscillatory shock structure in the averaged 
pressure field but is not violent enough to produce strong 
shocks that can account for cavitation erosion. 

In this paper the averaged cloud behavior in one 
dimension has been explored, while any scattering effects 
(such as fluctuations due to singe bubble collapse) in a 

specific realization of spherical bubbles. Quantification of 
the deviation from the averaged dynamics is of importance 
for cavitation erosion studies (Fuster & Colonius, 2012). 
Additional damping mechanisms associated with bubble 
fission (Brennen, 2002; Delale & Tunç, 2004) and bubble 
size distributions (Ando et al., 2009, 2011, 2013; Colonius 
et al., 2008) may play an important role for the averaged 
dynamics. These issues as well as the geometrical focusing 
effects need to be addressed in a future work. 
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